Evolution of the RHIC Machine Capability

RHIC performance

Luminosity upgrade using full energy electron cooling (RHIC II)

Electron Beam Ion Source (EBIS)

Thomas Roser RHIC Detector Workshop November 13 - 14, 2001

Gold Ion Collisions in RHIC

Polarized Proton Collisions in RHIC

RHIC performance

- Collisions at RHIC design beam energy (100 GeV/nucl)
- 200 MHz rf system operational
 - > 5 ns bunch length and an interaction region with $\sigma \sim 25$ cm
- Luminosity exceeding RHIC design luminosity of 2 × 10²⁶ cm⁻² s⁻¹
- 40% availability is limiting total integrated luminosity

Intra-Beam Scattering (IBS) in RHIC

- Longitudinal emittance growth agrees well with model
- Additional source of transverse emittance growth
- IBS determines RHIC Au performance
- Eventually will need electron cooling (see below)

RHIC upgrade opportunities

Possible upgrades for heavy ions:

- Increase luminosity
- Increase atomic number: $Au^{197} \rightarrow U^{238}$ (EBIS)
- Increase c.m. energy: 200 GeV → 240 GeV

Possible upgrades for protons:

- Increase luminosity
- Increase c.m. energy: 500 GeV → 600 GeV
- Further luminosity upgrade

RHIC design luminosity

$$L = \frac{3f_{rev}\gamma}{2} \frac{N_b N^2}{\epsilon \beta^*} = 9 \text{ to } 1 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1} \text{ over } 10 \text{ hours}$$

$$N_b = 56$$
; $N = 1 \times 10^9$; $\varepsilon = 15$ to $40\pi \mu m$; $\beta^* = 2m$

RHIC Upgrade Possibilities

- 'Enhanced' luminosity (x4) possible with existing machine:
 - Double the number of bunches to 112
 - Decrease β* from 2 m to 1m
- Further luminosity upgrades can be achieved by:
 - Decreasing β* further with modified optics
 - Increasing bunch intensity
 - Decreasing beam emittance
- All options are limited by intra-beam scattering and require beam cooling at full energy!
- Preliminary study on RHIC electron cooling shows that luminosity can be increased ten times.
- Energy upgrade to 120 x 120 GeV/u (Au) or 300 x 300 GeV (protons) possible by replacing the DX magnets. (Present DX magnets have the smallest operational margin)

Electron Cooling at RHIC Storage Energy

- RHIC performance is limited by intra-beam scattering.
- Electron beam cooling at full RHIC energy could eliminate this limitation and even reduce beam emittance further.
- Feasibility supported by study produced by BINP (V. Parkhomchuk et al.)
- Bunched electron beam requirements for 100 GeV/u gold beams:
 E = 54 MeV, <I> ≤ 100 mA, electron beam power: ≤ 5 MW!
- Requires high brightness, high power, energy recovering superconducting linac, almost identical to IR FEL at TJNAF
- Has several applications at BNL: PERL, eRHIC (EIC)
- First linac based, bunched electron beam cooling system used at a collider
- First high p_i electron cooler to avoid recombination of e⁻ and Au⁷⁹⁺

Electron cooling of low energy beams

MPI-Receiburg TSR Requ

12C5- (733 Mel)

x [mm]

The RHIC Electron Beam Cooler

R&D issues:

High intensity photocathode electron gun

High efficiency energy recovering sc linac with magnetized electron beam

Efficient electron beam transport and debunching/bunching

High precision (10 ppm) solenoid for 30 m cooling section.

RHIC Luminosity and Emittance with Cooling

RHIC beam cooling R&D

Feasibility report completed in April 2001, start design.

R&D items:

- High precision solenoid (10 ppm)
- High brightness photocathode electron gun
- A high-current, low-energy-spread linac

2003:[\$2.0M]	Build high brightness cathode gun with required duty cycle		
	Start construction of energy recovering SC linac		
	Start construction of solenoid prototype		
2004:[\$2.0M]	Start beam tests with photocathode gun		
	Complete solenoid prototype		
2005:[\$2.0M]	Complete and test energy recovering SC linac		

Project: \$60M (incl. \$6M R&D), Construction: 2005 - 2008

Heavy Ion Luminosity Upgrades

	RDM	RDM+	RHIC II
Initial emittance(95%) πμm	15	15	15
Final emittance (95%) πμm	40	40	3
Beta function at IR [m]	2.0	1.0	$1.0 \rightarrow 0.5$
Number of bunches	60	120	120
Bunch population [109]	2	2	2
Beam-beam parameter per IR	0.0016	0.0016	0.004
Angular size at IR [µrad]	108	153	95
RMS beam size at IR [µm]	216	150	95
Peak luminosity [10 ²⁶ cm ⁻² s ⁻¹]	8	32	83
Average luminosity [10 ²⁶ cm ⁻² s ⁻¹]	2	8	70

RDM and RDM+ assume 10 hr stores

RHIC II includes electron beam cooling and assumes 5 hr stores since burn-off is high

Proton Luminosity Upgrades

	RHIC Spin	RHIC II	Future Upgrade
Emittance(95%) πμm	20	12	12
Beta function at IR [m]	I	1	0.3
Number of bunches	120	120	360
Bunch population [10 ¹¹]	2	2	2
Beam-beam parameter per IR	0.007	0.012	0.012
Angular size at IR [µrad]	112	86	157
RMS beam size at IR [µm]	112	86	47
Luminosity [10 ³² cm ⁻² s ⁻¹]	2.4	4.0	40.0

RUN2001: Au-Au luminosity: 6×10²⁶ cm⁻² s⁻¹ [N-N luminosity ~ 10³¹ cm⁻² s⁻¹]

RHIC II: Beam-beam tune shift limited for 2 interaction regions

Future Upgrade: Mini-beta quads and more bunches

Will also require major detector upgrades

EBIS/Linac RHIC Pre-Injector

- Highly successful development of Electron Beam Ion Source (EBIS) at BNL
- Reliable, low maintenance Linac-based pre-injector replacing the Tandem Van de Graaffs
- EBIS allows for the production of high intensity uranium beams
- Ready to start construction

Results from Test EBIS (1/2 of RHIC EBIS)

RHIC Requirements

10 A

20 keV

 $5.5 \times 10^{11} (Au, 10 A, 1.5m)$

≤ 40 µs

 3.4×10^{9}

 2.4×10^{9}

Achieved

10 A

20 keV

 3.2×10^{11} (Au, 8 A, 0.7m)

20 µs

~ 1.5 × 109

Yield of Au³³⁺

E-beam current

E-beam energy

Yield of pos. charges

Yield of U45+

Pulse length

BROOKHAVEN NATIONAL LABORATORY

Summary

- Full design Au luminosity achieved during RUN2001
- RHIC luminosity upgrades (RHIC II):
 - with existing machine: × 4
 - with full energy electron cooler: × 10 possible
- Further upgrades are possible:
 - Higher energy
 - Increased atomic number
 - Even higher luminosity with shorter bunches spacing and mini-beta interaction regions

